Bio 3SS3

Version 3

Formulas

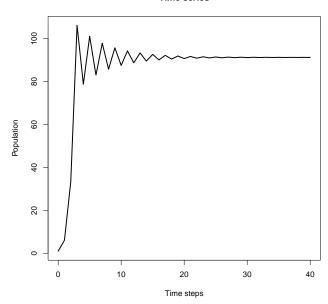
discrete time growth:

- $N_T = N_0 \lambda^T$
- $\lambda = f + p$
- $\mathcal{R} = f/(1-p)$

continuous time growth:

- $N(t) = N(0) \exp(rt)$
- r = b d
- $\mathcal{R} = b/d$
- 1. In simple, continuous-time models of a single species competing for resources, we often see population cycles:
 - A. In models where competition is contest-like
 - **B.** In models where competition is scramble-like
 - C. In models without competition
 - D. We don't see population cycles in simple continuous-time models
- **2.** Consider a discrete-time, regulated population model with p = 0 and $f = f_0 \exp(-N/N_c)$ with $N_c = 50$ indiv/ha and $f_0 = 10$ What is R(0)?
 - **A.** 5
 - **B.** 10
 - **C.** $\exp(-5)$
 - **D.** $10 * \exp(-5)$
 - **E.** $5 * \exp(-10)$

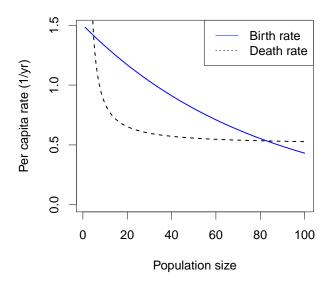
3. A population is changing in continuous time, according to the equation dN/dt = r(N)N. What are the conditions for this population to be in equilibrium at a non-zero value?


A.
$$r(N) = 0$$

B.
$$0 < r(N) < 1/yr$$

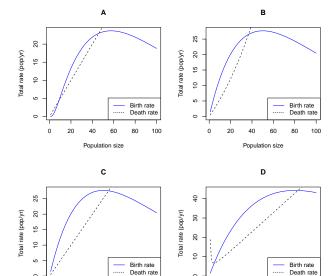
C.
$$r(N) = 1/yr$$

D.
$$r(N) = 1$$



- 4. The picture above illustrates a time series that is:
 - A. Converging smoothly to a stable equilibrium
 - ${\bf B.}$ Converging with oscillations to a stable equilibrium
 - C. Converging with oscillations to an unstable equilibrium
 - $\mathbf{D.}$ Oscillating without convergence around an unstable equilibrium
- 5. When studying insect populations with non-overlapping generations, researchers often use the time when insects are pupating as their census time because
 - A. pupae are easy to find and count accurately
- B. counting just before reproduction gives the most detailed information about the population
- ${f C.}$ counting just before reproduction gives the simplest accurate model of the population
- **D.** counting just after reproduction gives the most detailed information about the population
- **E.** counting just after reproduction gives the simplest accurate model of the population

Use this information for the next two questions. A microbial population grows in a flask with discrete, non-overlapping generations (i.e., survival to next generation p = 0), and finite rate of increase $\lambda = 2$. Its generation time is 1 day. The population takes 20 days to fill 100% of the flask.


- **6.** How much of the flask is filled after 19 days?
 - **A.** 5%
 - **B.** 50%
 - C.67%
 - **D.** 95%
 - E. There is not enough information to tell
- **7.** Which of the following *most* accurately describes the instantaneous growth rate r for this population?
 - **A.** r < 0
 - **B.** r > 0
 - **C.** 0 < r < 1
 - **D.** r > 1
 - E. There is not enough information to tell
- **8.** Which of the following most accurately describes the reproductive number \mathcal{R} for this population?
 - A. $\mathcal{R} > 1$
 - **B.** $1 < \mathcal{R} < 2$
 - C. $\mathcal{R}=2$
 - D. $\mathcal{R} > 2$
 - **E.** There is not enough information to tell

- 9. The long-term average finite rate of growth λ of a successful species should be:
 - **A.** Very close to 0
 - **B.** Substantially greater than 0, but substantially less than 1
 - C. Very close to 1
 - **D.** Substantially greater than 1

- 10. The figure above shows _____ in the birth rate and ____ in the death rate
 - A. density dependence; density dependence
 - ${\bf B.}$ Allee effects; density dependence
 - C. Allee effects; Allee effects
 - **D.** density dependence; Allee effects

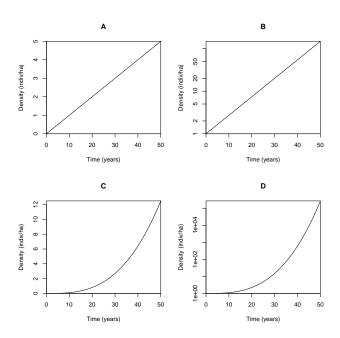
11. Which of the four pictures below was generated by the same model as the large picture?

80

Population size

- **A.** A
- **B.** B
- **C.** C
- D. D
- **12.** This population has a(n) ______ equilibrium at 0 individuals and a(n) _____ equilibrium at 80 individuals

40


- A. stable; stable
- B. stable; unstable
- C. unstable; stable
- **D.** unstable; unstable
- **13.** If a simple model assumes individuals are independent of each other, then _____ death rates should _____ with the size of the population.
 - A. per capita; increase
 - B. per capita; decrease
 - C. total; increase
 - **D.** total; decrease

Use this information for the following two questions. A population of small plants has discrete, overlapping generations. Adults survive each year with a probability of 3/4 (and thus they have an average lifespan of four years). Each reproducing adult produces an average of 10 seeds each year, of which an average of 8% survive to reproduce in the next year. We model this population using a discrete-time model with time step of 1 year, and we count individuals just before reproduction.

14.	What	are	the	values	for	survival	p	and	fecundity	f	for	this	model?

- **A.** p = 1/4 and f = 10
- **B.** p = 3/4 and f = 10
- **C.** p = 1/4 and f = 0.8
- **D.** p = 3/4 and f = 0.8
- 15. The reproductive number \mathcal{R} for this population is:
 - **A.** 1.05
 - **B.** 1.55
 - C. 3.2
 - **D.** 10.25
 - **E.** 13.33
- 16. In this class, the professor argued that populations cannot increase or decline exponentially for long, and that high population densities must:
 - A. have direct positive effects on their own growth rate
 - **B.** have either indirect or direct positive effects on their own growth rate
 - C. have direct negative effects on their own growth rate
 - **D.** have either indirect or direct negative effects on their own growth rate
- 17. Plotting how population changes through time on a log scale reflects a(n) ______ perspective, because _____ changes through time reflect _____ rates of birth and death
 - A. individual; additive; per capita
 - B. individual; multiplicative; per capita
 - C. population; additive; total
 - **D.** population; multiplicative; total

18. One of the four pictures below shows a population growing exponentially – which one?

- 19. An ecologist believes that a population's fecundity decreases when crowded following the equation $f(N) = (N/N_e)^{-k}$. If N is measured in units of indiv/ha, then:
 - **A.** N_e and k are also in [indiv/ha]
 - **B.** N_e is unitless, and k is in [indiv/ha]
 - C. N_e is in [indiv/ha], and k is unitless
 - **D.** N_e and k are both unitless
- 20. Which of the following processes is necessary for population cycles?
 - **A.** Regulation
 - **B.** Allee effects
 - C. Stochasticity
 - **D.** Predator-prey dynamics
 - E. Age structure

Name	Macid	Tutorial section	Version 3
Short-answe	r questions		
-	- , ,	necessary work and equations. nen the correct information is	•
females in the year at 0.035/year. T	ar 2006 to 1000 in 2020. The sea turtle population	es was observed to decline from The instantaneous death rate has a 1:1 sex ratio. For the ging exponentially, on average	d was estimated purposes of this
a) Why does d h	ave units of [1/year] onl	y (no turtles)?	
b) What is the in	nstantaneous rate of cha	ange r for this population?	
c) What is the in	nstantaneous birth rate	b?	
d) What is the li	fetime reproductive nur	nber \mathcal{R} ?	
22. Give one plabirds	ausible reason for densit	by dependence in a population	n of seed-eating